Audi trunk latch failure analysis.

This is a trunk latch actuator from an Audi station wagon. When 12V is applied the motor will spin the white gear which is attached to a spring encased in the red plastic. The gear is also attached to a rod which is threaded into a second shaft which will be drawn in and release the trunk latch. What makes this interesting is there is no limit switch, the actuator is very minimal.

The other interesting factor is why the actuator needed to be replaced. Most of the time it worked perfectly, however on occasion it would fail the unlock the trunk. The failure to open increased in hot weather. What was happening to the motor was more obvious when it was out of the car. When 12V was repeatedly applied the motor would first pull very firmly and quickly but with each repeated actuation it would become weaker and weaker. This is obvious in the videos below.

Inside the case the brushed dc motor is attached directly to the terminals and there are no other electronics inside. The car must switch the power to the actuator on for a certain length of time to unlock after which it turns off and the spring returns the actuator to its resting position. If the switched signal is too short the actuator won’t work, however if it is too long the motor will stall. The only method the car has for feedback is that there will be a switch that shows when the trunk is open or closed, however if something is holding the trunk closed or it becomes stuck then this will not work. To ensure that the motor doesn’t stay stalled and burn out there has to be a fail-safe (which there is!).

Inside the motor housing there is a large PTC thermistor! When the motor becomes stalled the temperature in the thermistor will rise quickly due to the excess current until only a nominal current is drawn by the actuator. When the actuator is released the temperature in the thermistor drops rapidly and the motor can turn with full torque once again. I believe there are two possibilities to why this actuator stopped behaving as designed. The first is that the thermistor drifted out of spec and its resistance increased too much at lower temperatures. When the car was hot the thermistor resistance was too high to allow sufficient current to turn the motor. The other option is that as the motor brushes wore their resistance increased, so for the same voltage applied to the actuator the motor had less torque. This combined with higher heat and a slight increase in thermistor resistance meant the motor just stalled. If I had a second actuator to compare I could determine the culprit.


Dead bug soldering SMD.

Dead bug soldering of surface mount components can be a pain, but in some cases it is absolutely necessary. Many components with be based on a standard footprint (SOIC-8 for example), however occasionally parts will have their own footprint that is impossible to buy a breakout board for.

I wanted to test a MEMS I2S microphone made by Analog Devices which had a very interesting footprint. The eight square pads had a 5 mil pitch, however there is the round ground pad around the microphone port that needs to be connected. In this case I opted to flip the chip over and superglue it down to a different breakout board I had. The two following pictures are how it turned out.


I first fluxed all the pads, then added solder to both the breakout board as well as the pads on the microphone. Because the round ground pad was adjacent to another ground pad I bridged the gap with solder. After cleaning my iron and applying more flux I positioned single stranded wire ( I had removed the insulation with wire strippers) with tweezers and applied heat. The final product looks a little messy close up due to excess flux. The white haze is from the superglue.

After all the connections were made the I2S interface worked like a charm. I will post a tutorial on using I2S with the LPC1769 a little later in the month.

TI’s TMP006

Today I received a sample order from Texas Instruments. Among several ICs for a school project I also sampled some of the TMP006  “Infrared Thermopile Sensors”. I don’t have a PCB to solder them to yet, so I decided to take some macro photos.

I apologize for the quality. The top light in my microscope burned out and so all the pictures are light from the side with a handheld flashlight while trying to hold my camera steady and focused through the eyepiece. After this buying a nice microscope with a built in digital camera seems like a good idea.

The title picture is the top of the chip. It has the part number (TMP006), the alignment mark in the lower left, and what is probably the lot trace code. The interesting part is when the chip is flipped over. This is a chip-scale BGA package, which is convenient in terms of the amount of space it takes up, but almost impossible to solder by hand. To give a sense of scale the spacing between the center of each metal ball is 0.5mm.

I would have liked to get some higher quality pictures, but that will have to wait until I have a better setup .